Why Tooling U-SME?

More than 50% of Fortune 500® manufacturing companies choose Tooling U-SME. Why? We offer competency-based learning solutions focused on your performance outcomes. This catalog provides a detailed list of all our online course offerings, including over 500 classes in multiple functional areas—plus information on instructor-led training, certification programs, assessments, custom content, and books and videos. But we do so much more. We’ll analyze needs, assess your current knowledge, and develop a program that fills the gaps. Then, we’ll help you launch, track, and measure the results. From beginner to advanced, our classes will help you train your new and existing employees and build your next-generation workforce.
CONTENTS

ONLINE & INSTRUCTOR-LED CLASSES

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Foundational</td>
<td>Includes: Safety, Applied Mathematics, Materials, Inspection, Lean, Quality</td>
</tr>
<tr>
<td>11 Machining</td>
<td>Includes: Abrasives; CNC: Fanuc, Haas, Mazak; Manual Machining; Metal Cutting; Workholding</td>
</tr>
<tr>
<td>13 Maintenance</td>
<td>Includes: Electrical, Mechanical, Hydraulics & Pneumatics, Rigging, Motor Controls, PLCs, Robotics</td>
</tr>
<tr>
<td>15 Welding</td>
<td>Includes: Welding Basics, Arc Welding, GMAW, SMAW, GTAW</td>
</tr>
<tr>
<td>16 Additive Manufacturing</td>
<td>Includes: Additive Basics, Materials, Design</td>
</tr>
<tr>
<td>16 Stamping/Forming/Fabricating</td>
<td>Includes: Press and Stamping Basics, Operations, Coiling, Guides, Dies</td>
</tr>
<tr>
<td>17 Composites Processing</td>
<td>Includes: Composites Basics, Molding, Inspection</td>
</tr>
<tr>
<td>17 Assembly/Final Stage Processes</td>
<td>Includes: Adhesives, Coatings, Fasteners, Soldering</td>
</tr>
<tr>
<td>18 Design & Engineering</td>
<td>Includes: Blueprint Reading, FMEA, GD&T, Root Cause Analysis</td>
</tr>
<tr>
<td>18 Leadership</td>
<td>Includes: Supervisor Essentials, Communication, Accounting</td>
</tr>
</tbody>
</table>

TRAINING PRODUCTS & SERVICES

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Instructor-Led Training</td>
<td></td>
</tr>
<tr>
<td>20 Learning Services</td>
<td></td>
</tr>
<tr>
<td>21 Customization</td>
<td></td>
</tr>
<tr>
<td>22 Certifications</td>
<td></td>
</tr>
<tr>
<td>23 Assessments</td>
<td></td>
</tr>
</tbody>
</table>
We are your training partner. With credentials.

Over the last 85 years, we’ve worked with hundreds of thousands of individuals, companies, and educational institutions. Our courses are aligned to national credentials including Lean Certification, Certified Manufacturing Engineer, Certified Manufacturing Technologist, and Certified Additive Manufacturing, plus National Institute for Metalworking Skills (NIMS), Manufacturing Skills Standards Council (MSSC), American Welding Society (AWS), and Siemens Mechatronics certifications. Our courses also may be mapped to individual or state curriculum requirements.

How can we help you?

Find out how we can partner with you to develop a competency-based solution to fit your training needs and your budget. Contact us at info@toolingu.com or call 866.706.8665.
Tooling U-SME’s customized training makes it possible to:

- Develop mission-critical skills
- Minimize the skills gap
- Expedite onboarding and define skills development
- Capture and standardize “tribal knowledge”
- Ensure operational excellence/world-class manufacturing
- Boost operational effectiveness and productivity
- Drive continuous improvement
- Improve quality and reduce scrap
- Leverage new technologies and drive innovation
- Cross train and increase workforce flexibility
- Reduce learning curve for new technologies
- Decrease risk and exposure
- Improve safety
- Drive compliance
Nine out of 10 manufacturers are struggling to find the skilled workers they need

To address this pressing challenge, Tooling U-SME brought together a cross-section of manufacturing experts to create a new industry resource: a Competency Framework for achieving manufacturing excellence.

The Competency Framework features a comprehensive series of competency models in nine manufacturing functional areas. It is made up of more than 60 job role competency models, which outline knowledge and skill objectives for production, technician, lead technician/technologist, and engineer-level job roles.

The Competency Framework offers advantages that tie directly to business goals:

- Ensures enterprise-wide consistency, making a workforce more flexible and dynamic, and ultimately reducing labor costs
- Streamlines the training process and cuts costs by eliminating unnecessary and redundant training, allowing more training where needed
- Helps managers easily evaluate worker performance levels defined using specific behavioral indicators, reducing subjective assessment and increasing assessment accuracy
- Enhances employee satisfaction based on the rationality of the system
- Explains career pathways and defines what an average performer needs to become a superior performer

Created by a cross-section of manufacturing experts, Tooling U-SME’s Competency Framework is a comprehensive series of competency models in nine manufacturing functional areas.
Designed to complement other competency models in the industry, the Competency Framework can be used “as is” or customized to individual work practices at your facility. Another benefit is that the knowledge objectives within the framework are mapped directly to Tooling U-SME’s extensive training resources. All this helps ensure your employees have the knowledge, skills, and abilities they need to be high performers.
FOUNDATIONAL

Foundational: Instructor-Led Training
Basic Electronics
Blueprint Reading
GD&T
Industrial Safety / Low Voltage Safety
Intro to Composites
Train-the-Trainer: Accelerating Worker Performance
Lean Fundamentals
Lean Kaizen Workshop
Lean Value Stream Mapping
Quality Failure Modes and Effects Analysis (FMEA)
Quality / Statistical Process Control (SPC)
Quality Root Cause Analysis

General Safety: Online Classes
Intro to OSHA 101
Ergonomics 102
Personal Protective Equipment 111
Noise Reduction and Hearing Conservation 121
Respiratory Safety 131
Lockout/Tagout Procedures 141
SDS and Hazard Communication 151
Bloodborne Pathogens 161
Walking and Working Surfaces 171
Fire Safety and Prevention 181
Flammable/Combustible Liquids 191
Hand and Power Tool Safety 201
Safety for Lifting Devices 211
Powered Industrial Truck Safety 221
Confined Spaces 231
Environmental Safety Hazards 241
Arc Flash Safety 251
Fall Protection 261
Machine Guarding 271

Department Safety: Online Classes
Safety for Hydraulics and Pneumatics 211
Grinding Safety 211
Additive Manufacturing Safety 121
Mazak Mill: Safety for the Mill 260
Mazak Mill: Safety for the Lathe 265
Safety for Composite Processing 115
Safety for Electrical Work 111
Safety for Assembly 105
Safety for Mechanical Work 111
Safety for Metal Cutting 101
Metal Cutting Fluid Safety 231
Press Brake Safety 100
Rigging Inspection and Safety 210
Robot Safety 211
Safety for Soldering 115
Stamping Safety 115
Welding Safety Essentials 101
PPE for Welding 111
Welding Fumes and Gases Safety 121
Electrical Safety for Welding 131
Oxyfuel Welding Safety 105

Applied Mathematics: Online Classes
(Formerly Shop Essentials)
Math Fundamentals 101
Math: Fractions and Decimals 111
Applied and Engineering Sciences 110
Units of Measurement 112
Basics of Tolerance 121
Manufacturing Process Applications: Part I 124
Manufacturing Process Applications: Part II 125
Blueprint Reading 131
Algebra Fundamentals 141
Geometry: Lines and Angles 151
Geometry: Triangles 161
Geometry: Circles and Polygons 171
Shop Geometry Overview 170
Trigonometry: The Pythagorean Theorem 201
Trigonometry: Sine, Cosine, Tangent 211
Trigonometry: Sine Bar Applications 221
Shop Trig Overview 210
Statistics 231
Interpreting Blueprints 230
Concepts of Calculus 310
Materials: Online Classes

- Introduction to Physical Properties 101
- Introduction to Mechanical Properties 111
- Introduction to Metals 121
- Introduction to Plastics 131
- Introduction to Ceramics 141
- Introduction to Composites 151
- Composite Processing 152
- Metal Manufacturing 140
- Classification of Steel 201

Essentials of Heat Treatment of Steel 211
- Hardness Testing 221
- Ferrous Metals 231
- Nonferrous Metals 241
- Thermoplastics 251
- Thermosets 261
- Principles of Injection Molding 255
- Principles of Thermoforming 265
- Exotic Alloys 301
FOUNDATIONAL (CONTINUED)

Inspection: Online Classes
- Basic Measurement 101
- Calibration Fundamentals 111
- Basics of Tolerance 121
- Blueprint Reading 131
- Hole Standards and Inspection 141
- Thread Standards and Inspection 151
- Surface Texture and Inspection 201
- Hardness Testing 221
- Measuring System Analysis 300
- Introduction to GD&T 301
- Introduction to GD&T 200 (1994)
- Major Rules of GD&T 311
- Interpreting GD&T 310 (1994)
- GD&T Applications 312
- Inspecting a Prismatic Part 321
- Inspecting a Cylindrical Part 331
- Advanced Hole Inspection 341
- Inspecting with Optical Comparators 351
- Inspecting with CMMs 361
- Calibration and Documentation 371
- In-Line Inspection Applications 381

Lean: Online Classes
- Lean Manufacturing Overview 101
- Continuous Process Improvement: Managing Flow 124
- Continuous Process Improvement: Identifying and Eliminating Waste 125
- Developing a Lean Culture 135
- Total Productive Maintenance 141
- 5S Overview 151
- Cell Design and Pull Systems 161
- Intro to Six Sigma 171
- Troubleshooting 181
- Conducting Kaizen Events 191
- SPC Overview 211
- Metrics for Lean 231
- Process Flow Charting 241
- Strategies for Setup Reduction 251
- Total Quality Management Overview 261
- Management Tools: Problem Solving 270
- Management Tools: Product and Process Design 275

Value Stream Mapping: The Present State 301
Value Stream Mapping: The Future State 311
Six Sigma Goals and Tools 310
Maintaining a Consistent Lean Culture 330
Transforming Lean Into Business Results 340
Measuring Lean Systems 350

Lean: Instructor-Led Training
- Lean Fundamentals
- Kaizen Workshop
- Value Stream Mapping

Quality: Online Classes
- Quality Overview 111
- ISO 9000 Review 121
- ISO 9001: 2015 Review 122
- Approaches to Maintenance 131
- Process Design and Development 133
- Product Design and Development 134
- Production System Design and Development 136
- Equipment/Tool Design and Development 137
- Intro to Supply Chain Management 140
- Quality and Customer Service 175
- Conducting an Internal Audit 201
- IATF 16949: 2016 Overview 222

Quality: Instructor-Led Training
- Failure Modes and Effects Analysis (FMEA)
- Quality / Statistical Process Control (SPC)
- Root Cause Analysis

Sample of Supplemental Videos
- What Lean Means
- Mapping Your Value Stream
- Managing Teams in Manufacturing
MACHINING

Machining: Instructor-Led Training
- Bearings/Gears
- CNC Fundamentals
- Industrial Safety / Low Voltage Safety
- Robotics
- Programmable Logic Controllers (PLCs)

Abrasives: Online Classes
- Intro to Abrasives 101
- Grinding Processes 201
- Grinding Safety 211
- Basic Grinding Theory 221
- Basics of the Surface Grinder 231
- Basics of the Cylindrical Grinder 232
- Basics of the Centerless Grinder 233
- Setup for the Surface Grinder 241
- Setup for the Cylindrical Grinder 242
- Setup for the Centerless Grinder 243
- Surface Grinder Operation 251
- Cylindrical Grinder Operation 252
- Centerless Grinder Operation 253
- Introduction to Grinding Fluids 261
- Grinding Variables 301
- Grinding Ferrous Metals 311
- Grinding Nonferrous Metals 321
- Grinding Wheel Materials 331
- Dressing and Truing 341
- Grinding Wheel Selection 351
- Grinding Wheel Geometry 361

CNC: Online Classes
- Intro to CNC Machines 201
- History and Definition of CNC 202
- Basics of the CNC Lathe 211
- Basics of the CNC Mill 212
- Basics of the CNC Swiss-Type Lathe 135
- Coordinates for the CNC Lathe 221
- Coordinates for the CNC Mill 222
- Basics of G Code Programming 231
- Intro to CAD and CAM for Machining 241
- Control Panel Functions for the CNC Lathe 251
- Control Panel Functions for the CNC Mill 252
- Offsets on the CNC Lathe 261
- Offsets on the CNC Mill 262

CNC Spec for the Mill 220
CNC Spec for the Lathe 225
Creating a CNC Turning Program 301
Creating a CNC Milling Program 302
Calculations for Programming the Lathe 311
Calculations for Programming the Mill 312
Canned Cycles for the Lathe 321
Canned Cycles for the Mill 322

CNC Control–Fanuc: Online Classes
- Fanuc Mill: Control Panel Overview 250
- Fanuc Lathe: Control Panel Overview 255
- Fanuc Mill: Entering Offsets 260
- Fanuc Lathe: Entering Offsets 265
- Fanuc Mill: Locating Program Zero 270
- Fanuc Lathe: Locating Program Zero 275
- Fanuc Mill: Program Execution 280
- Fanuc Lathe: Program Execution 285
- Fanuc Mill: Program Storage 310
- Fanuc Lathe: Program Storage 315
- Fanuc Mill: First Part Runs 320
- Fanuc Lathe: First Part Runs 325

CNC Control–Haas: Online Classes
- Haas NGC: Control Panel Overview 101
- Haas NGC: Entering Mill Offsets 201
- Haas NGC: Entering Lathe Offsets 202
- Haas NGC: Locating Program Zero on the Mill 211
- Haas NGC: Locating Program Zero on the Lathe 212
- Haas Mill: Control Panel Overview 250
- Haas Lathe: Control Panel Overview 255
- Haas Mill Classic Controls: Entering Offsets 260
- Haas Lathe: Entering Offsets 265
- Haas Mill Classic Controls: Locating Program Zero 270
- Haas Lathe: Locating Program Zero 275
- Haas Mill: Program Execution 280
- Haas Lathe: Program Execution 285
- Haas Mill: Program Storage 310
- Haas Lathe: Program Storage 315
- Haas Mill: First Part Runs 320
- Haas Lathe: First Part Runs 325
MACHINING (CONTINUED)

CNC Control–Mazak: Online Classes
Mazak Mill: Control Panel Overview 250
Mazak Lathe: Control Panel Overview 255
Mazak Mill: Safety for the Mill 260
Mazak Lathe: Safety for the Lathe 265
Mazak Mill: Locating Program Zero 270
Mazak Lathe: Locating Program Zero 275
Mazak Mill: Entering Offsets 280
Mazak Lathe: Entering Offsets 285
Creating an EIA/ISO Program for the
Mazak Mill 286
Creating an EIA/ISO Program for the
Mazak Lathe 287
Creating a Mazatrol Program for the Mill 288
Creating a Mazatrol Program for the Lathe 289
Mazak Mill: Program Execution 290
Mazak Lathe: Program Execution 295
Mazak Mill: Program Storage 310
Mazak Lathe: Program Storage 315
Mazak Mill: First Part Runs 320
Mazak Lathe: First Part Runs 325

Manual Machining: Online Classes
Manual Mill Basics 201
Engine Lathe Basics 211
Manual Mill Setup 221
Engine Lathe Setup 231
Benchwork and Layout Operations 241
Manual Mill Operation 251
Engine Lathe Operation 261
Holemaking on the Mill 271
Threading on the Engine Lathe 301
Taper Turning on the Engine Lathe 240

Metal Cutting: Online Classes
Safety for Metal Cutting 101
Cutting Processes 111
Overview of Machine Tools 121
Basic Cutting Theory 201
Intro to Screw Machining 160
Band Saw Operations 211
Intro to Metal Cutting Fluids 221
Metal Cutting Fluid Safety 231
Prints for Metal Cutting Operations 241
Toolholders for Turning 260
Speed and Feed for the Lathe 301
Speed and Feed for the Mill 311

Cutting Tool Materials 321
Carbide Grade Selection 331
ANSI Insert Selection 341
Advanced Tool Materials 345
Lathe Tool Geometry 351
Mill Tool Geometry 361
Drill Tool Geometry 371
Optimizing Tool Life and Process 381
Impact of Workpiece Materials 391
High-Speed Machining 310
Hard Turning 315
Machining Titanium Alloys 325
Intro to EDM 100

NIMS: Online Classes
NIMS Core Skills 111
NIMS Core Machining Skills 121
NIMS Core Milling Skills 131
NIMS Core Turning Skills 132
NIMS Core CNC Milling Skills 141
NIMS Core CNC Turning Skills 142
NIMS Core Advanced Machining Skills 151
NIMS Core Measurement and Materials Skills 211
NIMS Core Job Planning Skills 221
NIMS Core Mill Programming and Setup Skills 231
NIMS Core Lathe Programming and Setup Skills 232
NIMS Core Drill Press Skills 241
NIMS Core Grinding Skills 251
NIMS Core Manual Milling Skills 261
NIMS Core Manual Turning Skills 262

Workholding: Online Classes
Intro to Workholding 101
Locating Devices 121
Clamping Basics 108
Chucks, Collets, and Vises 110
Supporting and Locating Principles 111
Fixture Body Construction 200
Fixture Design Basics 201
Drill Bushing Selection 230

Sample of Supplemental Videos
Cutting Tool Geometries
Milling and Machining Centers
MAINTENANCE

Maintenance: Instructor-Led Training
Basic Electronics
Industrial Safety / Low Voltage Safety
Programmable Logic Controllers (PLCs)
Robotics

Electrical Systems: Online Classes
Electrical Units 101
Safety for Electrical Work 111
Introduction to Circuits 201
Introduction to Magnetism 211
DC Circuit Components 221
NEC Overview 231
AC Fundamentals 241
Electrical Instruments 251
Electrical Print Reading 261
DC Power Sources 271
AC Power Sources 281
Conductor Selection 291
Series Circuit Calculations 201
Parallel Circuit Calculations 311
Battery Selection 321

Hydraulics & Pneumatics: Online Classes
Intro to Fluid Systems 101
The Forces of Fluid Power 201
Safety for Hydraulics and Pneumatics 211
Introduction to Hydraulic Components 221
Introduction to Pneumatic Components 231
Introduction to Fluid Conductors 241
Fittings for Fluid Systems 251
Preventive Maintenance for Fluid Systems 261
Hydraulic Power Variables 301
Hydraulic Power Sources 302
Pneumatic Power Variables 311
Pneumatic Power Sources 312
Hydraulic Control Valves 341
Hydraulic Schematics and Basic Circuit Design 342
Pneumatic Control Valves 351
Pneumatic Schematics and Basic Circuit Design 352
Actuator Applications 361
Hydraulic Fluid Selection 371
Contamination and Filter Selection 381
Hydraulic Principles and System Design 391

Mechanical Systems: Online Classes
Introduction to Mechanical Systems 101
Safety for Mechanical Work 111
Forces of Machines 121
Mechanical Power Variables 202
Power Transmission Components 201
Lubricant Fundamentals 211
Bearing Applications 221
Spring Applications 231
Belt Drive Applications 241
Gear Applications 251
Gear Geometry 261
Clutch and Brake Applications 271

Rigging: Online Classes
Intro to Machine Rigging 110
Rigging Equipment 120
Lifting and Moving Equipment 130
Rigging Inspection and Safety 210
Rigging Mechanics 220

Motor Controls: Online Classes
Relays, Contactors, and Motor Starters 201
Control Devices 211
Distribution Systems 221
Limit Switches and Proximity Sensors 231
Introduction to Electric Motors 301
Symbols and Diagrams for Motors 311
Logic and Line Diagrams 312
DC Motor Applications 321
AC Motor Applications 322
Solenoids 331
Reversing Motor Circuits 341
Motor Drive Systems and Maintenance 347
Electrical Maintenance for Motor Drive Systems 348
Mechanical Maintenance for Motor Drive Systems 349
Specs for Servomotors 330
Timers and Counters 340
Electronic Semiconductor Devices 350
Photonic Semiconductor Devices 355
Limit Switches and Proximity Sensors 360
Photoelectric and Ultrasonic Devices 365
Reduced Voltage Starting 370
Solid-State Relays and Starters 375
Deceleration Methods 380
Acceleration Methods 385
MAINTENANCE (CONTINUED)

PLCs–Allen Bradley/Rockwell: Online Classes
Introduction to PLCs 201
Hardware for PLCs 211
Basics of Ladder Logic 221
Numbering Systems and Codes 222
PLC Inputs and Outputs 231
Basic Programming for PLCS 241
PLC Timers and Counters 251
Networking for PLCs 261
Hand-Held Programmers of PLCs 280
PLC Diagrams and Programs 300
Overview of PLC Registers 305
PLC Program Control Instructions 310
Math for PLCs 320
Sequencer Instructions for PLCs 330
PLC Installation Practices 340
PID for PLCs 350
Data Manipulation 360
Shift Registers 370

PLCs–Siemens: Online Classes
Basics of Siemens PLCs 200
Siemens PLC Hardware 210
Numbers, Codes, and Data Types for Siemens PLCs 220
Siemens PLC Communication 230
Siemens Human Machine Interfaces 250
Siemens PLC Inputs and Outputs 240
Siemens SIMATIC Modular PLCs 260
Siemens PLC Programming Concepts 270
Basic Ladder Diagram Programming for Siemens PLCs 280
Basic Function Block Diagram Programming for Siemens PLCs 290
Ladder Diagram Timers and Counters for Siemens PLCs 300
Function Block Diagram Timers and Counters for Siemens PLCs 310
Additional Ladder Diagram Instructions for Siemens PLCs 320
Additional Function Block Diagram Instructions for Siemens PLCs 330
Siemens SIMATIC S7-1200 PLCs 340
Siemens SIMATIC S7-1500 PLCs 350
Siemens Safety Integrated for Factory Automation 360

Robotics: Online Classes
Introduction to Robotics 201
Robot Safety 211
Robot Components 120
End Effectors 125
Applications for Robots 130
Automated Systems and Control 135
Robot Axes 140
Robot Sensors 150
Robot Troubleshooting 331
Robot Maintenance 170
Concepts of Robot Programming 341
Robotic Drives, Hardware, and Components 220
Robot Installations 230
Robotic Control Systems 240
Vision Systems 250
Industrial Network Integration 260

Sample of Supplemental Videos
TPM: Total Productive Maintenance Industrial Robotics
Autonomous Activities
WELDING

Welding: Online Classes
What Is Oxyfuel Welding? 100
Oxyfuel Welding Safety 105
Welding Safety Essentials 101
PPE for Welding 111
Welding Fumes and Gases Safety 121
Electrical Safety for Welding 131
Introduction to Welding 141
What Is Arc Welding? 110
Introduction to Welding Processes 151
Arc Welding Processes 120
Math Fundamentals for Welding 161
Geometry Fundamentals for Welding 171
Material Tests for Welding 201
Welding Ferrous Metals 211
Welding Nonferrous Metals 212
Overview of Weld Types 221
Overview of Weld Defects 222
Welding Symbols and Codes 231
Fabrication Process 232
Electrical Power for Arc Welding 241
Introduction to GMAW 251
Introduction to SMAW 252
Introduction to FCAW 261
Introduction to GTAW 262
Introduction to Submerged Arc Welding 160
Arc Welding Power Sources 260
Overview of Soldering 271
Thermal Cutting Overview 281
Oxyfuel Cutting Applications 282
Plasma Cutting 283
Intro to Automation 291
GMAW Applications 301
Advanced GMAW Applications 302
SMAW Applications 311
FCAW Applications 321
GTAW Applications 331
Oxyfuel Welding Applications 207
SAW Applications 255
Arc Welding Aluminum Alloys 310
ADDITIVE MANUFACTURING

Additive Manufacturing: Online Classes
Introduction to Additive Manufacturing 111
Additive Manufacturing Safety 121
The Basic Additive Manufacturing Process 131
Additive Manufacturing Methods and Materials 141
Design for Additive Manufacturing 201
Additive Manufacturing Materials Science 211
Integrating Additive Manufacturing with Traditional Manufacturing 221
Additive Manufacturing as a Secondary Process 231

Additive Manufacturing: Instructor-Led Training
Implementation and Best Practices of Additive Manufacturing
Mastering the Fundamentals of Additive Manufacturing

Sample of Supplemental Videos
Rapid Prototyping
Medical Applications of Rapid Prototyping

STAMPING/FORMING/FABRICATING

Stamping: Online Classes
Press Basics 110
Stamping Safety 115
Punch and Die Operations 120
Die Components 130
Coil Handling Equipment 140
Die Cutting Variables 200
Monitoring Press Operations 220
Guiding System Components 230
Stripper System Components 235

Stamping: Instructor-Led Training
Metal Formability
Metal Stamping Press Maintenance
Stamping Dies

Press Brake: Online Classes
Press Brake Safety 100
Press Brake Components 110
Bending Fundamentals 120
Die Bending Operations 130
Operating the Press Brake 200
Press Brake Specifications 220

Sample of Supplemental Videos
Punch Presses
COMPOSITES PROCESSING

Composites: Online Classes
- Safety for Composite Processing 115
- Traditional Composites 125
- Advanced Thermoset Resins for Composites 130
- Advanced Materials for Composites 135
- Intro to Lay-up and Spray-up Molding 140
- Intro to Compression Molding 170
- Surface Finishing Composites 190
- Vacuum Bagging Technique:
 - Single-Sided Bagging 230
- Composite Inspection and Defect Prevention 240
- Repair Methods for Composites 250

Composites: Instructor-Led Training
- Intro to Composites

Sample of Supplemental Videos
- Automated Composite Layup and Spray Up
- Filament Winding
- Composites Post Fabrication and Joining

ASSEMBLY/FINAL STAGE PROCESSES

Adhesives: Online Classes
- Intro to Adhesive Bonding 110
- Basics of the Bonding Process 120
- Intro to Adhesive Properties 130
- Surface Preparation 210
- Steps for Adhesive Application 220

Coatings: Online Classes
- Intro to Coating Composition 110
- Surface Preparation for Coatings 120
- Processes for Applying Coatings 140
- Coating Defects 150
- Troubleshooting Coating Defects 170

Fasteners: Online Classes
- Intro to Assembly 100
- Safety for Assembly 105
- Intro to Fastener Threads 110
- Overview of Threaded Fasteners 117
- Tools for Threaded Fasteners 120
- Overview of Non-Threaded Fasteners 125
- Intro to Fastener Ergonomics 130
- Properties for Fasteners 200
- Understanding Torque 210
- Threaded Fastener Selection 215

Soldering: Online Classes
- What is Soldering? 110
- Safety for Soldering 115
- Soldering Equipment 130
- Soldering Applications 200
- Solder and Flux Selection 210
- Soldering PCBs 220
- Lead-Free Soldering 230

Sample of Supplemental Videos
- Plastics Machining and Assembly
- Fastening and Assembly
- Brazing and Soldering
- Design for Manufacture and Assembly (DFMA)
DESIGN & ENGINEERING

Design & Engineering: Instructor-Led Training
Blueprint Reading
Design for Manufacturing/Design for Assembly (DFM/DFA)
Failure Modes and Effects Analysis (FMEA)
Geometric Dimensioning & Tolerance (GD&T)
Precision Machine Design
Root Cause Analysis
Value Stream Mapping

Sample of Supplemental Videos
Lean Product Development
Measurement and Gaging
Gaging and Inspection Tool Design
Design for Manufacture and Assembly (DFMA)
DFM: Design for Manufacturing

LEADERSHIP

Supervisor Essentials: Online Classes
Essentials of Leadership 110
Essentials of Communication 120
Managing Performance: Best Practices 130
Managing Performance: Corrective Actions 135
Basics of Manufacturing Costs 140
Intro to Managerial Accounting 145
Conflict Resolution Principles 150
Conflict Resolution for Different Groups 155
Team Leadership 160
Manufacturing Management 180
Personal Effectiveness 190
Managing the Diverse Workplace 210
Harassment and Discrimination 215
Performance Management and the Law 230

Supervisor Essentials: Instructor-Led Training
Coaching and Mentoring for Front Line Supervisor (FLS)
Front Line Supervisor (FLS) Leadership Skills
Train-the-Trainer: Accelerating Worker Performance
INSTRUCTOR-LED TRAINING

Real-World Expertise

Successful manufacturers recognize the value in long-time employees using their expertise to mentor less-experienced team members. From startups that lack institutional knowledge, to thriving businesses that have lost veteran workers to retirement, most companies can benefit from the value-added experience of learning from experts.

Bring the real world to your staff with Tooling U-SME Instructor-Led Training. Work with instructors who are knowledgeable, experienced, and have a passion for teaching others about manufacturing. Our instructors offer a depth of industry knowledge that is matched only by their professional experience and their passion for the subject matter.

Your employees benefit from:

- Engaging with industry experts and practicing professionals
- Learning complex ideas through dynamic exchange
- Experiencing comprehensive coverage combined with hands-on applications
- Combining instructor interaction with other forms of training, such as online
- Enhancing their understanding through peer-to-peer discussions

We have dozens of topics to choose from, including Blueprint Reading, Leadership Skills, Additive Manufacturing, Lean Fundamentals, and many, many more.
LEARNING SERVICES

Tap into the highest level of expertise in workforce development for your training needs.

Tooling U-SME works on-site with your human resources, management, and front-line team members to develop a business case for a training and development program, determine gaps in performance, and build a training strategy that delivers measurable Return on Investment (ROI). As your partner, we can design a custom, competency-based training curriculum with blended learning, build career progression models aligned to pay scales, validate competencies with knowledge tests and skills assessments, and ensure performance standards are measurable and trackable. All of this is aligned to your business goals.

No matter where your organization is in its learning and development path, there’s an opportunity to evaluate whether your training is meeting your needs effectively. Whether you need to develop a training program from the bottom up, you need training for a particular piece of equipment or process, or you want to benchmark your existing program, our Learning Services team can analyze your needs and build a custom solution.
CUSTOMIZATION

Forward-thinking organizations invest in custom programs

Precisely and effectively address your company’s proprietary needs and reflect your corporate culture with customized content.

Tooling U-SME offers a range of content customization services that can seamlessly integrate your content into a strategic training plan to make sure your people learn what they need for your organization.

Upload Services for Pre-Developed Content
Use our format guide and templates to convert and upload your pre-existing content for web-based delivery. Your online content fits seamlessly into our system.

Complete Content Services from our Design Staff
Gain access to our own content development resources to transform your expertise into web-based training of the highest quality. Deliver your training to your people, anywhere in the world.
CERTIFICATIONS

Knowledge earned. And validated.

Tooling U-SME offers outcome assessments, certifications, and certificate programs that allow you to benchmark your employees’ knowledge against an industry-recognized standard. Programs are developed with experienced industry professionals to test effectiveness and provide the validation you need.

Review Programs

Our online review programs provide a comprehensive review of key concepts for the Certified Manufacturing Technologist (CMfgT) and the Lean Bronze Certifications. Each one provides vocabulary and definitions, interactive exercises, pre- and post-course tests, and a downloadable PDF of each course.

Certifications

Lean Certification

This industry-leading program provides individuals, companies, and educators with a comprehensive and effective roadmap for professional and workforce development that aligns with industry-recognized standards. The program is the result of a partnership among leading non-profit organizations — the Association for Manufacturing Excellence (AME), the Shingo Institute, and SME — that work together as the Lean Certification Alliance to set the standard for operational excellence and workforce improvement. Lean Certification not only helps individuals attain the knowledge, it validates it. Find out more at sme.org/leancert.

Certified Manufacturing Technologist (CMfgT)

The CMfgT is an entry-level certification that benefits new manufacturing engineers and experienced manufacturers without other credentials. Pursuing a CMfgT Certification requires a minimum of four years combined manufacturing-related education and/or work experience. Learn more at sme.org/CMfgT.

Certified Manufacturing Engineer (CMfgE)

Professionals seeking a CMfgE Certification have advanced manufacturing engineering experience, with a minimum of eight years of combined manufacturing-related education and/or work experience, including a minimum of four years of work experience. A professional seeking a CMfgE can qualify with a minimum of eight years of combined manufacturing-related work experience or education. Details available at sme.org/CMfgE.

Certified Additive Manufacturing

The Certified Additive Manufacturing – Fundamentals (CAM-F) is ideal for individuals seeking to work in additive manufacturing roles in automotive, aerospace, and medical equipment. It is also ideal for high schools and colleges as a capstone or standalone achievement to increase workforce readiness in additive manufacturing.

The Certified Additive Manufacturing – Technician (CAM-T) is ideal for individuals with a two-year associate’s degree in additive manufacturing or is currently enrolled in a college program, and/or has one or more years of working experience in a manufacturing related field.

Learn more at www.sme.org/amcert.
Close the skills gap to stay competitive

Effective assessment of knowledge is a critical first step in your overall training plan.

At Tooling U-SME, we know exactly what you need. Our assessments allow you to align competencies, curriculum, and the needs of individual workers so they can study their specific courses in a self-paced learning environment. Assessment questions are derived from our extensive course libraries, which are fully mapped to our industry-proven curriculum.

Effective training establishes a baseline of knowledge for each person, compares that baseline to the knowledge and skill requirements of a role, and then applies the exact amount of training to close the gap, ensuring that the knowledge and skills have been retained and applied on the job. The bottom line is that effective assessment of knowledge is a critical step in your overall training plan.

Assess manufacturing technology, engineering, lean processes and practices, machining, welding, fabrication, maintenance, assembly, foundational skills, and much more using Tooling U-SME’s 50+ pre-developed assessments, or we’ll work with you to develop assessments based on your specific needs.

For more information, visit: toolingu.com/training/assessments
WHY TOOLING U-SME?

- The leader in manufacturing training solutions
- Proven solutions for corporate, education, and government organizations
- A single partner who can assemble the resources necessary to support your initiatives
- More than 85 years of experience in providing learning services, assessment programs, and credential certifications
- Hundreds of thousands of individuals, and over 5,000 companies and 550 educational institutions throughout the global manufacturing community rely upon Tooling U-SME

UP-TO-DATE CONTENT

We release new and updated content every month. Plus, we have hundreds of classes available in Spanish and dozens translated into simplified Chinese. To view our most current class listings, visit toolingu.com/catalog